Diagnostic and Treatment Options for Gastroesophageal Reflux and Bronchiectasis

Abraham Khan, MD, FACG, FASGE Medical Director, Center for Esophageal Health NYU Langone Health

Gastroesophageal Reflux and Bronchiectasis

How could they be related???

The Basics

The Esophagus

- Tubular structure
 - Major purpose: transport swallowed food from throat to stomach
- Extends from the upper esophageal sphincter (UES) to the lower esophageal sphincter (LES)

Swallowing

How Many Practitioners Are Involved?

- Many specialists and practitioners may be involved along with pulmonologists and primary care
 - Including but not limited to:
 - Oral specialists/dentistry
 - Otolaryngologists (ENT)
 - Swallow center specialists
 - Gastroenterologists
 - Esophageal/motility specialists

Background: Swallowing Disorders

- An oropharyngeal disorder
 - Could be due to a problem in throat or larynx, may need ENT practitioner involved
 - Could be due to a neuromuscular problem in this area, may need swallow therapist involved and particular swallow xrays
- An esophageal motility (neuromuscular) disorder: problem with pushing food and/or liquid through esophagus into stomach
 - Examples
 - Esophageal spasm, achalasia
 - Can result in contents ascending up into airway
- These problems may be mild and patient may not know there is a swallowing "problem"

Esophageal Disease

- Gastroesophageal Reflux Disease (GERD)
 - Definition: a condition that develops when the reflux of stomach contents causes troublesome symptoms and/or complications

Gastroesophageal reflux

Symptoms

Damage

Symptoms

Typical symptoms

- Postprandial heartburn
- Effortless regurgitation

Atypical symptoms

- Potentially due to GERD
- Includes trouble swallowing, chest pain, cough, hoarseness, excessive throat clearing, wheezing, feeling of a lump in the throat

Potential Complications from Esophageal Disease Proximal to the Esophagus

Current Knowledge

- Prevalence of GERD in bronchiectasis ranges from 26-75% in a review of several studies
 - This does not mean the GERD causes bronchiectasis each time
- There is a relative lack of clinical studies looking at treatment options for GERD in patients with bronchiectasis in terms of the pulmonary outcomes
 - One 2014 study of only 7 patients getting surgery for GERD showed that pulmonary function tended to improve
 - One 2016 study of over 250 patients treated with or without a proton pump inhibitor (PPI) for GERD did not show a clear improvement overall of lung function after PPI therapy 6 months later
 - Only 27 patients got PPIs, and a portion of them did do significantly better

Treating GERD

- Diet and lifestyle good habits
- Often a PPI is chosen
- Potential side effects of PPIs
 - Iron deficiency, vitamin B12 deficiency, C difficile-associated diarrhea, bacterial infections and SIBO are mechanistically plausible but risk estimates are low and they are treatable conditions
 - Evidence for the development of chronic kidney disease, myocardial infarction, bone fracture, and dementia is low quality and currently not compelling to alter management
- However
 - Understand if **need** to be on this type of drug long-term
 - *Weigh risks versus benefits*

Putative risk	Mechanism	Plausibility of causality (+ to +++)	Nature of evidence	Risk estimate	Clinical significance
Acute interstitial nephritis	Idiosyncratic effect, rare	+++	Observational (case-control)	Moderate (OR, 5.16)	Emphasizes need for valid PPI indication
Iron deficiency	Hypochlorhydria, poor absorption	+++	Observational (case-control)	Low (OR, 2.49)	Minimal; treatable and reversible
Vitamin B12 deficiency	Hypochlorhydria, poor absorption	+++	Systematic review, meta-analysis	Low (HR, 1.83)	Minimal; treatable and reversible
Severe hypomagnesemia	Idiosyncratic effect, rare	+++	Observational (case reports)	Insufficient data to calculate	Emphasizes need for valid PPI indication
Fundic gland polyp	Hypergastrinemia	+++	Systematic review, meta-analysis	Low (OR, 2.45)	Minimal
Small intestinal bacterial overgrowth	Loss of acid-mediated gastric sterility	+++	Meta-analysis	Low (OR, 2.28)	Minimal; treatable and reversible
Dementia	β-Amyloid deposits	++	Observational (prospective cohort)	Very low (HR, 1.44)	Minimal; evidence is too weak
Spontaneous bacterial peritonitis in cirrhotic patients	SIBO, bacterial translocation	++	Systematic review, meta-analysis	Low (OR, 2.28)	Minimal; emphasizes need for valid PPI indication
Clostridium difficile-associated diarrhea	Loss of acid-mediated gastric sterility	++	Meta-analysis	Low (RR, 1.69)	Minimal; emphasizes need for valid PPI indication
Bone fracture	Hypochlorhydria, poor calcium absorption	++	Observational (case-control)	Low (OR, 2.65)	Minimal; standard bone health recommendation
Hepatic encephalopathy in cirrhotic patients	SIBO, bacterial translocation	++	Observational (case-control)	Low (HR, 1.72)	Minimal; emphasizes need for valid PPI indication
Chronic kidney disease	Not established	++	Observational (population-based cohort)	Low (HR, 150)	Minimal; evidence is too weak
Dementia	β-Amyloid deposits	++	Observational (prospective cohort)	Very low (HR, 1.44)	Minimal; evidence is too weak
Community-acquired pneumonia	Loss of acid-mediated gastric sterility, aspiration	+	Systematic review, meta-analysis	Very low (OR, 1.49)	Minimal; evidence is too weak
Acute cardiovascular events	Drug-drug interaction with hepatic metabolism of clopidogrel	+	Randomized controlled trial	Not observed (HR, 0.99)	Minimal; emphasizes need for valid PPI indication

Plausibility of causality was graded from + to +++: + = hypothesized, not reported, or not observed; ++ = weak association observed; and +++ = causal relationsh established.

HR. Hazard ratio: OR. odds ratio: RR. relative risk: SIRO, small intestinal bacterial overgrowth

Procedural GERD Treatment

Generally → alternatives to chronic acid suppression

Outcome data being updated frequently

Best prognosis: current data

- Good symptomatic response to GERD medical treatment
- Proven pathological GERD
- Positive symptom correlation on ambulatory pH testing
- Normal esophageal motility

Surgical fundoplication

Magnetic sphincter augmentation

Future directions

- Understanding exact phenotypes based on diagnostic testing to guide procedural decisions for individual patients
- Need more outcome studies!
- *Major priority for our esophageal program here at NYU*

Endoscopic fundoplication

Radiofrequency treatment

Questions Often Needing Answers

- Does GERD predispose a patient to develop bronchiectasis?
- Can GERD make bronchiectasis worse?
- If GERD is involved, is the problem from acid, bile, or any type of reflux?
- How should we treat GERD in patients with bronchiectasis?
- Could an esophageal motility or swallowing problem complicate the picture?
- *The answers to these questions remain very individualized*

Upper endoscopy

- Procedure through mouth with anesthesia
- Good for looking at lining of esophagus and excluding complications in the esophagus from GERD
- Cannot disprove GERD
- Minimally useful for motility of the esophagus

- pH study #1: wireless pH capsule
 - Small capsule placed on endoscopy
 - Transmits acid data to recorder on outside of body for 48-96 hours
 - Capsule falls off on own and does not need another procedure to retrieve
 - Recorder returned by patient when recording has stopped
 - Can determine in great detail the association between diet, lifestyle and the quantity of acid reflux over several days of a patient's routine
 - Can determine if the symptoms are likely due to acid reflux

- pH study #2:
 pH-impedance testing
 - Catheter through nose and into stomach, attached to a recorder worn by patient
 - Records acid, bile and all liquid reflux for 20-24 hours
 - Recorder returned the next day by patient and data is then downloaded
 - Can detect how high up the reflux goes in the esophagus and also correlate that reflux to a patient's symptoms

Esophageal manometry

- Deciphers if there is a motility problem in esophagus
- Catheter placed through the nose and attached to computer on the outside of body
- Study takes 10 to 15 minutes of swallowing liquids in different positions
- Catheter is then removed and data is interpreted by physician

Our Approach

- Our understanding of the association between GERD as well as other esophageal conditions with pulmonary disease like bronchiectasis continues to evolve.
- When patients have an esophageal condition with bronchiectasis, it is still a very *personalized* field, and we typically have to use our advances in diagnostic testing to determine our best answers to:
 - Is the esophageal condition in that individual patient contributing to the pulmonary disease?
 - How best should the esophageal condition be treated, with a focus on a long-term approach?
 - How should we follow our treatment of the esophageal condition to determine if it is making a positive impact on the pulmonary disease?

Thank You

Contact Information:

Abraham Khan, MD

Office: 212-263-3095

